Integrates Smartsheet for healthcare analytics, enabling efficient data management and analysis in clinical research and...
Created byApr 23, 2025
Smartsheet MCP Server
A Model Context Protocol (MCP) server that provides seamless integration with Smartsheet, enabling automated operations on Smartsheet documents through a standardized interface. This server bridges the gap between AI-powered automation tools and Smartsheet's powerful collaboration platform.
Overview
The Smartsheet MCP Server is designed to facilitate intelligent interactions with Smartsheet, providing a robust set of tools for document management, data operations, and column customization. It serves as a critical component in automated workflows, enabling AI systems to programmatically interact with Smartsheet data while maintaining data integrity and enforcing business rules.
Key Benefits
**Intelligent Integration**: Seamlessly connects AI systems with Smartsheet's collaboration platform
**Data Integrity**: Enforces validation rules and maintains referential integrity across operations
**Formula Management**: Preserves and updates formula references automatically
**Flexible Configuration**: Supports various column types and complex data structures
**Error Resilience**: Implements comprehensive error handling and validation at multiple layers
**Healthcare Analytics**: Specialized analysis capabilities for clinical and research data
**Batch Processing**: Efficient handling of large healthcare datasets
**Custom Scoring**: Flexible scoring systems for healthcare initiatives and research
Use Cases
**Clinical Research Analytics**
- Protocol compliance scoring
- Patient data analysis
- Research impact assessment
- Clinical trial data processing
- Automated research note summarization
The server implements a bridge architecture between MCP and Smartsheet:
**TypeScript MCP Layer** (`src/index.ts`)
- Handles MCP protocol communication
- Registers and manages available tools
- Routes requests to Python implementation
- Manages configuration and error handling
**Python CLI Layer** (`smartsheet_ops/cli.py`)
- Provides command-line interface for operations
- Handles argument parsing and validation
- Implements duplicate detection
- Manages JSON data formatting
**Core Operations Layer** (`smartsheet_ops/__init__.py`)
- Implements Smartsheet API interactions
- Handles complex column type management
- Provides data normalization and validation
- Manages system columns and formula parsing
Column Management Flow
Error Handling Flow
Features
Tools
`get_column_map` (Read)
- Retrieves column mapping and sample data from a Smartsheet
- Provides detailed column metadata including:
- Column types (system columns, formulas, picklists)
- Validation rules
- Format specifications
- Auto-number configurations
- Returns sample data for context
- Includes usage examples for writing data
`smartsheet_write` (Create)
- Writes new rows to Smartsheet with intelligent handling of:
- System-managed columns
- Multi-select picklist values
- Formula-based columns
- Implements automatic duplicate detection
- Returns detailed operation results including row IDs
`smartsheet_update` (Update)
- Updates existing rows in a Smartsheet
- Supports partial updates (modify specific fields)
- Maintains data integrity with validation
- Handles multi-select fields consistently
- Returns success/failure details per row
`smartsheet_delete` (Delete)
- Deletes rows from a Smartsheet
- Supports batch deletion of multiple rows
- Validates row existence and permissions
- Returns detailed operation results
`smartsheet_add_column` (Column Management)
- Adds new columns to a Smartsheet
- Supports all column types:
- TEXT_NUMBER
- DATE
- CHECKBOX
- PICKLIST
- CONTACT_LIST
- Configurable options:
- Position index
- Validation rules
- Formula definitions
- Picklist options
- Enforces column limit (400) with validation
- Returns detailed column information
`smartsheet_delete_column` (Column Management)
- Safely deletes columns with dependency checking
- Validates formula references before deletion
- Prevents deletion of columns used in formulas
- Returns detailed dependency information
- Supports force deletion option
`smartsheet_rename_column` (Column Management)
- Renames columns while preserving relationships
- Updates formula references automatically
- Maintains data integrity
- Validates name uniqueness
- Returns detailed update information
`start_batch_analysis` (Healthcare Analytics)
- Processes entire sheets or selected rows with AI analysis
- Supports multiple analysis types:
- Summarization of clinical notes
- Sentiment analysis of patient feedback
- Custom scoring for healthcare initiatives
- Research impact assessment
- Features:
- Automatic batch processing (50 rows per batch)
- Progress tracking and status monitoring
- Error handling with detailed reporting
- Customizable analysis goals
- Support for multiple source columns
`get_job_status` (Analysis Monitoring)
- Tracks batch analysis progress
- Provides detailed job statistics:
- Total rows to process
- Processed row count
- Failed row count
- Processing timestamps
- Real-time status updates
- Comprehensive error reporting
`cancel_batch_analysis` (Job Control)
- Cancels running batch analysis jobs
- Graceful process termination
- Maintains data consistency
- Returns final job status
Key Capabilities
**Column Type Management**
- Handles system column types (AUTO_NUMBER, CREATED_DATE, etc.)
- Supports formula parsing and dependency tracking
- Manages picklist options and multi-select values
- Comprehensive column operations (add, delete, rename)
- Formula reference preservation and updates
**Data Validation**
- Automatic duplicate detection
- Column type validation
- Data format verification
- Column dependency analysis
- Name uniqueness validation
**Metadata Handling**
- Extracts and processes column metadata
- Handles validation rules
- Manages format specifications
- Tracks formula dependencies
- Maintains column relationships
Type-Specific Features:
- TEXT_NUMBER: String/numeric comparisons
- DATE: ISO date parsing and comparison
- PICKLIST: Option validation
- CHECKBOX: Boolean handling
Processing Options:
- `batchSize`: Control update batch size (default 500)
- `lenientMode`: Continue on errors
- Multiple rules per request
- Multiple updates per rule
Result Tracking:
- Total rows attempted
- Success/failure counts
- Detailed error information
- Per-row failure details
Debugging
Since MCP servers communicate over stdio, debugging can be challenging. The server implements comprehensive error logging and provides detailed error messages through the MCP protocol.
Key debugging features:
Error logging to stderr
Detailed error messages in MCP responses
Type validation at multiple levels
Comprehensive operation result reporting
Dependency analysis for column operations
Formula reference tracking
Error Handling
The server implements a multi-layer error handling approach: