Integrates with Perplexity's web search API to enable real-time fact-checking, research, and content generation using up...
Created byApr 23, 2025
mcp-perplexity-search
Notice
**This repository is no longer maintained.**
The functionality of this tool is now available in [mcp-omnisearch](https://github.com/spences10/mcp-omnisearch), which combines multiple MCP tools in one unified package.
Please use [mcp-omnisearch](https://github.com/spences10/mcp-omnisearch) instead.
A Model Context Protocol (MCP) server for integrating Perplexity's AI
API with LLMs. This server provides advanced chat completion
capabilities with specialized prompt templates for various use cases.
Features
Advanced chat completion using Perplexity's AI models
Predefined prompt templates for common scenarios:
Technical documentation generation
Security best practices analysis
Code review and improvements
API documentation in structured format
Custom template support for specialized use cases
Multiple output formats (text, markdown, JSON)
Optional source URL inclusion in responses
Configurable model parameters (temperature, max tokens)
Support for various Perplexity models including Sonar and LLaMA
Configuration
This server requires configuration through your MCP client. Here are
examples for different environments:
Cline Configuration
Add this to your Cline MCP settings:
Claude Desktop with WSL Configuration
For WSL environments, add this to your Claude Desktop configuration:
Environment Variables
The server requires the following environment variable:
`PERPLEXITY_API_KEY`: Your Perplexity API key (required)
API
The server implements a single MCP tool with configurable parameters:
chat_completion
Generate chat completions using the Perplexity API with support for
specialized prompt templates.
Parameters:
`messages` (array, required): Array of message objects with:
- `role` (string): 'system', 'user', or 'assistant'
- `content` (string): The message content
`prompt_template` (string, optional): Predefined template to use:
- `technical_docs`: Technical documentation with code examples
- `security_practices`: Security implementation guidelines
- `code_review`: Code analysis and improvements
- `api_docs`: API documentation in JSON format
`custom_template` (object, optional): Custom prompt template with:
- `system` (string): System message for assistant behaviour
- `format` (string): Output format preference
- `include_sources` (boolean): Whether to include sources
`format` (string, optional): 'text', 'markdown', or 'json' (default:
'text')
`include_sources` (boolean, optional): Include source URLs (default:
false)
`model` (string, optional): Perplexity model to use (default:
'sonar')